
INFORMATION MEMORANDUM

POLYMET MINING CORPORATION

SEPTEMBER 2005

proteus capital corp o 120 BROADWAY, SUITE 1010 o NEW YORK, NY 10271 TEL: (646) 879-5970 o FAX (646) 365-3230 o E-MAIL: djnewby@proteuscapital.com www.proteuscapital.com This report was prepared by Proteus Capital Corp. ("Proteus") and published in September 2005. Subsequently, in November 2005, PolyMet Mining Corporation ("PolyMet") hired Mr. Douglas Newby, President and founder of Proteus, as its Chief Financial Officer. As such, Mr. Newby is now an insider of PolyMet. The opinions expressed in the report were made while Mr. Newby and Proteus were independent. It should be noted that the report was published as part of an advisory assignment between Proteus and PolyMet under which Proteus was paid by PolyMet and received stock options.

CONTACT INFORMATION

POLYMET MINING CORPORATION

Vancouver, British Columbia Canada V6E 2K3 Telephone: (604) 669-4701 Fax: (604) 669-4705 www.polymetmining.com

Transfer Agent: Pacific Corporate Trust Company Address: 625 Howe Street 10th floor Vancouver, British Columbia Canada V6C 3B8

PROTEUS CAPITAL CORP

120 Broadway, Suite 1010 New York, NY 10271 Telephone: (212) 867-1834 Fax: (646) 365-3230 www.proteuscapital.com

CONVERSION TABLE

One unit	=		unit	One unit	=		unit
acre	=	0.40469	hecatare	gramme	=	0.03215	tr. Ounces
acre	=	0.00156	sq miles	ounce	=	0.91146	tr. Ounces
hecatare	=	2.47105	acres	tr ounce	=	1.09714	ounces
sq miles	=	640.0	acres	tr ounce	=	31.1040	grammes
sq miles	=	259.0	hectares	tonne	=	2,204.59	pounds
kilometres	=	0.62137	miles	tonne	=	1.10229	s. tons
mile	=	1.60934	miles	tonne	=	0.98419	I. tons
metre foot	=	3.28084 0.30480		s. ton	=	-	pounds
				l. ton	=	2,240	
inch centimeter	=	0.02540 0.03937		g/mt oz/t	=	0.02917 34.2857	

IN THIS REPORT, CURRENCY IS US FUNDS, UNITS ARE METRIC TONNES, TROY OUNCES AND US DOLLARS UNLESS STATED OTHERWISE.

This Memorandum has been prepared solely for information purposes from publicly disseminated materials supplied to Proteus Capital Corp. ("Proteus") by PolyMet Mining Corporation (the "Company") and information gathered by Proteus from other sources. Proteus is retained by the Company to provide corporate advisory services, including but not limited to analysis of the Company's prospects. Any analysis and conclusions contained herein, other than analysis disseminated by the Company, are the sole responsibility of Proteus. Proteus has full editorial control of this Memorandum and all other information and analysis it prepares in connection with the Company.

The information contained herein has been prepared to assist parties in their evaluation of the Company. Neither Proteus nor the Company makes any representation or warranty as to the accuracy or completeness of this information and shall have no liability for any representations (expressed or implied) contained in, or for any omissions from, this presentation or any other written or oral communication transmitted to the recipient whether or not Proteus or the Company knew or should have known of any such errors or omissions or was responsible for or participated in its inclusion in or omission from the Memorandum.

This Memorandum includes certain estimates, projections and "forward looking statements" within the meaning of Section 21E of the Securities Exchange Act of 1934, as amended. Such forward looking statements reflect various assumptions by the Company, when attributed to the Company, or Proteus when attributed to Proteus or "we", concerning anticipated results, which assumptions may or may not prove to be correct. No representations are made as to the accuracy of such statements, estimates or projections. These forward-looking statements are made pursuant to the "safe harbor" provisions of the Private Securities Litigation Reform Act of 1995. While these statements are made to convey the Company's progress, business opportunities and growth prospects, such forward-looking statements represent the opinion of management or Proteus, according to attribution. Whereas management or Proteus believe such representations to be true and accurate based on information and data available to, respectively, the Company or Proteus at this time, actual results may differ materially from those described. The Company's operations and business prospects are always subject to risk and uncertainties.

This Memorandum does not constitute or form part of an offer of, or invitation to, acquire any financial instruments in the Company or any company associated therewith. Proteus is not a registered investment advisor under the Securities Act of 1940. Any investment in any security mentioned herein should be made only after consulting and analyzing financial statements and other documentation received directly from the issuer of the security or securities involved. Proteus provides corporate advisory services to the Company, for which it is paid and has received stock options.

©Copyright 2005 by Proteus Capital Corp., all rights reserved. It is a violation of United States copyright laws to duplicate or reprint this report without written consent of Proteus Capital Corp., except that limited portions may be excerpted for inclusion in other publications provided credit is given along with the name and address of the publisher. All subsequent written or oral opinions expressed by Proteus Capital Corp., its associates and staff are expressly qualified in their entirety by this notice.

STOCK PRICE IN CANADIAN DOLLARS

SEPTEMBER 2005

CONTENTS

OVERVIEW	PAGE 1
SUMMARY Potential Enhancements Valuation Anticipated Value Drivers	2 3 3 5
CORPORATE & PROJECT REVIEW Location History Geology Mineralization Mining Processing Metal Recovery	6 6 7 9 11 13 15
PROJECT DEVELOPMENT	16
METALS MARKETS	18
FINANCIAL ANALYSIS Capital Structure Key Agreements Operating costs Valuation	19 19 20 21 22
MANAGEMENT	26

KEY STATISTICS

Symbol (C\$) Price (9.13.05) (C\$) 52 week: high (9.13.05) (C\$) low (2.09.05) (C\$)	SX-VShares out. (proforma 4/30/05)POMInsider ownership1.63Options & warrants (in the money)1.63Average exercise price0.51Cash (proforma)0,100Cash on option/warrant exercise	(millions) (%) (millions) (C\$) (US\$ mm) (US\$ mm)	83.081 29% 24.648 0.76 13.923 15.978
--	--	--	---

POLYMET MINING CORPORATION (TSX-V: POM) – OVERVIEW

There are three differentiating attributes of PolyMet Mining Corporation. Firstly, its 100%owned NorthMet deposit in northern Minnesota is one of the largest undeveloped non-ferrous metal deposits in the world. Secondly, the project has been transformed through the acquisition of a world-class crushing and milling facility for a fraction of the cost of building a new plant. Finally, this mix is combined with an excellent, highly experienced management team that owns nearly 30% of the Company.

We believe that this combination alone would be sufficiently powerful to make PolyMet highly attractive. In addition, with a US-based asset, PolyMet is exceptionally well positioned to benefit from secular strength in metals markets, driven by global economic growth and dollar weakness.

- NorthMet has a global resource of approximately 900 million tonnes grading 0.32% copper, 0.085% nickel, 0.006% cobalt, 0.43 grams per tonne platinum group metals, and 0.045 grams per tonne gold.
- A Canadian National Instrument 43-101-standard report published in July 2005 reviewed a plan to mine approximately 250 million tonnes over a 29-year mine life, representing just 28% of the total resource.
- > There are several valuation criteria: we believe the net present value of future cash flows is the most meaningful. Using three-year average metal prices, we estimate the pre-tax PV_{10} of the project to be approximately US\$230 million and the project IRR before tax to be 25.8%. By the time the project is in full production in 2008, the PV_{10} increases to more than US\$520 million, using those same three-year average metal prices.
- > If metal prices were to average 20% above the average of the past three years, which would put copper at US\$1.25 per pound and nickel at US\$6.30, compared with US\$1.74 and US\$6.85 respectively recently, those PV_{10} valuations increase to US\$450 million and nearly US\$800 million.
- The July 2005 plans are not optimized we expect the numbers in the definitive feasibility study scheduled for early 2006 to be even more compelling.
- The copper exploration market uses a valuation rule of thumb of US\$0.015 per pound of resource. PolyMet has in excess of six billion pounds of copper, which would support a valuation of approximately US\$95 million for the copper alone. With approximately US\$13 million cash, the copper alone equates to US\$1.30, which basically covers the closing share price of US\$1.39 – all the other metals and assets are in for free.
- Copper represents approximately 39% of projected revenues, to which must be added nickel and precious metals. This implies a valuation of US\$244 million on a copper-equivalent basis. Furthermore, the Company's acquisition of the Cliffs-Erie crushing and processing plant cuts capital development costs that are implicitly included in the rule of thumb valuation of US\$0.015 per pound of copper valuation by approximately US\$197 million.

It has often been said that mines are built not found. In other words, it takes more than a good mineral deposit to create a successful mine. Strong management can make an average ore body into a great mine. PolyMet combines a good ore body with an excellent management team that has already consummated a transaction that is worth many times the Company's current market valuation. We believe that the market has largely overlooked the underlying asset value.

SUMMARY

PolyMet is a Canadian mining corporation listed on the TSX-Venture exchange under the ticker symbol POM. The Company was formed in 1981 as Fleck Resources and changed its name to PolyMet in 1998 (we will use the name PolyMet throughout to avoid confusion.)

PolyMet's sole asset is the 100%-owned NorthMet project located in the iron range of northern Minnesota, which is the largest mining district in North America in terms of tons of rock mined and processed. NorthMet, discovered by US Steel in the late 1960s, is the largest known, undeveloped base metal deposit in North America and one of the largest in the world.

PolyMet acquired a twenty-year renewable lease from US Steel Corporation in 1989. In the 1960s, US Steel initially targeted a high grade copper-nickel core and then came to view NorthMet as a large, shallow, low grade copper-nickel deposit. In 1980, work conducted at the Minnesota Department of Natural Resources identified precious metal potential that transformed the economics of the project. It was this potential that attracted PolyMet and subsequently supported joint ventures with NERCO, Argosy Mining and North, a major Australian mining company that was subsequently acquired in 2001 by Rio Tinto, one of the world's largest mining companies.

RECENT DEVELOPMENTS

Recognition of the precious metal content at NorthMet was the first breakthrough in progress towards commercial production. The second breakthrough came with the commercialization of hydrometallurgical processes such as pressure oxidation which, although not yet entirely conventional, have been successfully deployed in numerous plants around the world.

There are two other transforming events that are critical to future success:

- A new management team led by Ian Forrest, Chairman, and Bill Murray, President & CEO, took over in 2003. The company is run by mine builders and operators who are focused on fast-tracking the project into production.
- This new management team has acquired a large crushing, grinding and flotation plant plus associated infrastructure strategically located near the project that will result in an enormous reduction in the capital expenditures at NorthMet.

The team has also reworked the mine plan, which will lower operating costs. A 2004 plan re-sized the project but kept the same basic mine layout as the 2001 prefeasibility study, mining 176 million tonnes of ore in two separate pits that involved mining some 544 million tonnes of waste.

The latest mine plan described in the 2005 Technical Report combines the pits and increases ore tonnage to 250 million tonnes while simultaneously reducing waste to 278 million tonnes, which reduces operating costs significantly.

In addition, the Company has recently completed a US\$12 million equity financing that provides sufficient funds to exercise the acquisition of the plant and to complete the definitive feasibility study.

RISK ASSESSMENT

We perceive two development risks. Firstly, while hydrometallurgical processes have been successfully deployed even in remote parts of the world, such processes are not yet standard practice.

Furthermore, while each part of the flow-sheet at NorthMet has been used commercially elsewhere, the combination has only been tried in a pilot plant (beta-test.) These risks are expected to be mitigated by a process guarantee from lead engineer, Bateman Engineering.

The second risk is permitting. The existing plant and tailings ponds have operated for nearly half a century, so that restarting operations should not be difficult. The metal recovery circuit does need new operating permits, as does the actual mine. However, the mine is located in the center of a very active mining district and the permitting process is well established.

The metals circuit will be built to the latest standards and will create much less environmental impact than the old iron-ore pellet plant. Nonetheless, securing operating permits represents the longest lead time in the drive towards production.

Countering these risks, there are several key operating areas that present much less risk than is typical for a development stage minerals project:

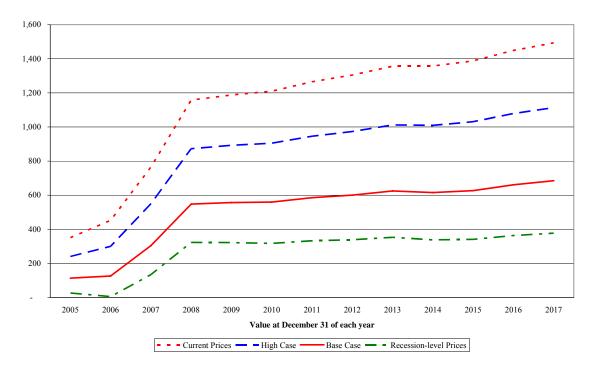
- The crushing, grinding and flotation circuit is already built and has a long operating history.
- > There is tremendous infrastructure in place both at the site and in the district.
- PolyMet is largely immune to rising construction costs because so much of the plant and infrastructure is already in place.
- With nearly forty years of exploration on the property, the geological risk is minimal.
- With three metal product streams, the project benefits from diversification of revenues and customers.

POTENTIAL ENHANCEMENTS

The July 2005 mine plan still only represents 28% of the total resource tonnage. There is scope for further expansion of the production rate and the total mine plan.

Furthermore, NorthMet is only one of several known polymetallic ore bodies in the area. Since current plans would only utilize 25% of the crushing and grinding plant capacity, NorthMet has the potential to both expand its own production and process ore from other mines in the area.

Finally, our evaluation assumes trailing three-year average metal prices projected forward for the life of the operation. We believe the combination of strong metal demand and dollar weakness could support higher metal prices.


VALUATION

After the latest financings, PolyMet has 83.1 million shares in issue at approximately US\$1.40 – the market capitalization is US\$115 million. The Company has approximately US\$13 million in cash, so the enterprise value (market capitalization adjusted for net cash/debt) is US\$102 million.

We believe that the fundamental value of a mining project is best defined by the present value of the future cash flow, discounted at an appropriate rate to reflect development risk. Since the development risk changes as the project advances, we reduce the discount rate in future years.

In addition, we take into account balance sheet items as the project advances through construction and then starts to generate positive cash flow to repay debt.

The chart below shows the total project value on our base case metal price assumptions (solid red line) increasing steadily from US\$113 million, using a 15% discount rate at the end of 2005, to nearly US\$550 million using a 7.5% discount rate once the project is in production at the end of 2008.

NorthMet Total Project Value (US\$ million)

If metal prices average 20% higher than the trailing three-year average (long-dash blue) the equivalent valuations increase to US\$240 million at the end of 2005 and some US\$870 million at the end of 2008. If current prices were to be sustained, the values increase to US\$350 million at the end of this year and US\$1.16 billion at the end of 2008 (short-dash red.) Finally, using ten-year historic averages, which we consider to be a recession-level pricing, the valuation still ramps to more than US\$320 million at the end of 2008 (variable-dash green.)

Each of the factors discussed under **potential enhancements** on Page 3 could increase these values further – indicating that PolyMet has the potential to become a billion dollar-plus base metal company over the next three years.

ANTICIPATED VALUE DRIVERS

- Exercise of the Cliffs option. The recent announcement that the Company has exercised the option early and expects to close the acquisition of the plant before the end of 2005 removes any uncertainty regarding the status of the plant ownership.
- Completion of pilot-plant (beta-test) program the final pre-production test report is scheduled for the third quarter of 2005.
- Completion of definitive feasibility study the study is scheduled for completion in early 2006 and will provide the market with a detailed development plan and economics.
- Receipt of operating permits targeted for early 2007, the permits will remove one of the uncertainties regarding the development schedule.
- Construction and start-up clearly the drive to production will enable the market to fully evaluate the project and the company and is typically a period of value recognition for the market.
- Metal prices we anticipate that metal prices will remain stronger than is the conventional wisdom on Wall Street, driven by a weakening dollar and continued strong demand internationally. If so, there are likely to be continued upward revisions to forecast metal prices and consequent increases in Wall Street's targets for metals stocks.
- Dollar weakness with a US-asset, PolyMet stands to gain the full benefit of the current effect of lower dollar and higher metal prices, while many other competitors may find the gains from higher metal prices offset by higher costs.
- Value recognition we believe that PolyMet has been overlooked by the market. The Company is largely unknown. As the potential becomes known and the management team continues to deliver on its promises in a timely fashion, we believe the market will begin to catch-up.

We believe the value drivers described above are of particular importance because each threshold will enhance the Company's recently-launched investor relations program.

CORPORATE AND PROJECT REVIEW

NORTHMET PROJECT LOCATION

NorthMet is located in northeastern Minnesota between Lake Superior to the south and the Canadian border to the north. The region is generally flat lying with low rolling hills and poor drainage with numerous shallow lakes and extensive wetlands. The climate is continental – cold winters and warm summers with moderate precipitation primarily in the summer.

The area has been mined for hematite since the 1860s and for taconite since the 1950s. There is excellent transportation and communications infrastructure including a well maintained system of road and rail transportation. NorthMet is close to various communities that support the mining industry – the nearby town of Hoyt Lakes was built specifically for the Cliffs-Erie operation.

HISTORY

PolyMet is a Canadian mining corporation formed in 1981 as Fleck Resources, renamed PolyMet Mining Corporation in 1998. Its sole asset is the 100%-owned NorthMet project in the iron range of northern Minnesota.

Prospectors first discovered copper and nickel some 20 miles north of NorthMet in the 1940s. Bear Creek Mining (now Rio Tinto/Kennecott) conducted a regional program that discovered the Babbitt (or Minnamax) deposit within the same geologic and structural setting as, and to the northeast of, NorthMet which, in turn, was discovered during regional exploration by US Steel in the late 1960s. US Steel originally thought it had found a high grade underground copper-nickel resource. Additional drilling through the 1970s demonstrated a large, shallow, moderate grade deposit. However, in the 1960s, US Steel only assayed for base metals and did not recognize the significant precious metal content. During the 1980s, the Minnesota Department of Natural Resources reassayed the core and discovered substantial quantities of platinum group metals and gold. In 1989, PolyMet acquired an initial 20-year renewable lease from US Steel and commenced a thorough re-evaluation of the project.

PolyMet's early success attracted joint ventures from NERCO and Argosy Mining. In July 2000, PolyMet entered into a joint venture agreement with North Limited, a major Australian mining company, whereby North could earn up to 87.5% by completing a bankable feasibility study and providing all the development funding.

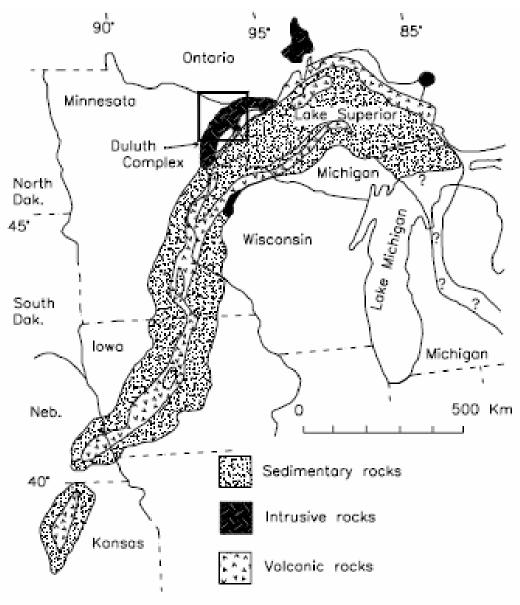
In July 2001, Rio Tinto, one of the world's largest mining companies, completed a hostile acquisition of North. PolyMet backed out of the joint venture under a change of control provision.

The new management team, led by Chairman Ian Forrest and President/CEO Bill Murray, took over the company in March 2003. In addition to securing an exclusive option to acquire the Cliffs Erie plant, which has recently been exercised, the new management has completely re-thought the development plans.

GEOLOGY

Northern Minnesota comprises mainly ancient Precambrian rocks. The eastern side of the State is dominated by the Midcontinent Rift System that extends in a serpent-like arc from Kansas in the southwest through Lake Superior. The Rift comprises thick lava flows, intrusives, and overlying sediments. The largest intrusive – the Duluth Complex – is located to the northwest of the Rift and lies at the intersection of several regional structures.

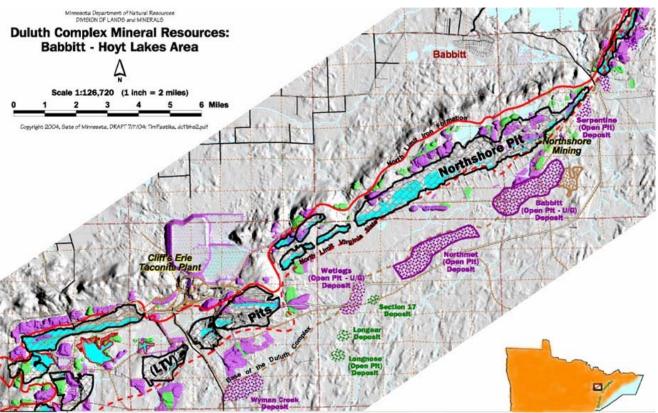
Regional Geology


The Duluth Complex is a large, well-known arc-like geologic feature that appears to have been emplaced along a system of northeast-trending faults where magma was intruded as sheet-like bodies along the contact between sedimentary rocks and basaltic lava flows.

NorthMet is located on the northwestern margin of the Duluth Complex. Immediately to the north, the Biwabik Iron Formation hosts the largest taconite (iron ore) mines in North America. Along the margin of the Complex there are several known copper-nickel deposits similar to NorthMet and comparable to Norilsk in Russia.

In the NorthMet area, the Duluth Complex comprises the Partidge River Intrusion which, in turn, has been sub-divided into 7 distinct lithologies known as Units 1 through 7. The Intrusion is underlain by the Virginia Formation, which consists of argillite with interbeds of greywacke, siltstone and minor silicate. This formation is underlain by the Biwabic Iron Formation, which outcrops to the northwest of NorthMet.

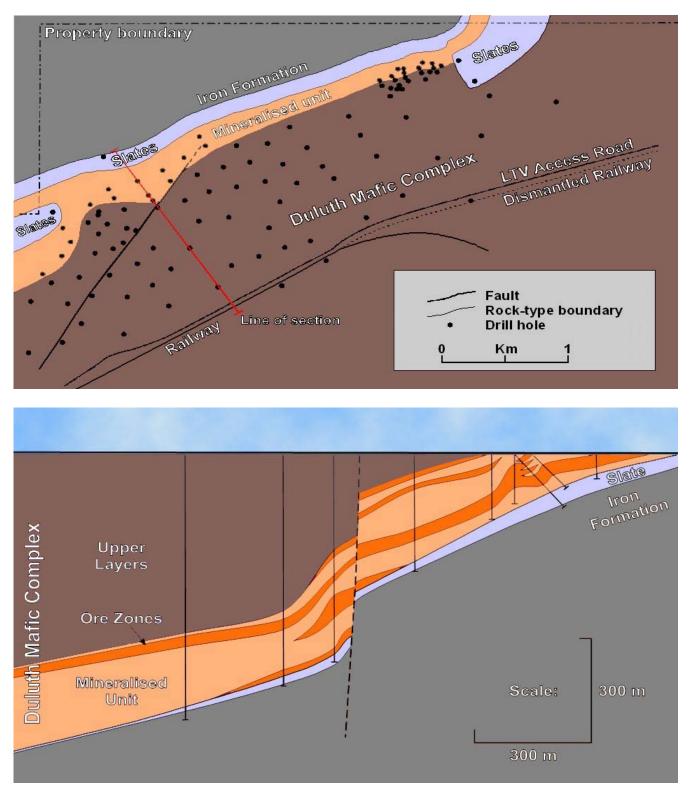
Rocks in the NorthMet area generally strike east-northeast and dip to the southwest at between 15° and 25° . There are two major east-northeast trending normal faults that dip steeply to the southeast with a third, more northerly-striking fault in the western portion of the deposit area.


The Midcontinental Rift System comprises two types of mineralization: hydrothermal and magmatic. The former includes native copper in basalts and sedimentary interbeds (Keewenaw Peninsula), sediment-hosted copper sulfide and native copper (White Pine, Michigan), and copper sulfide and polymetallic veins in volcanics.

Sketch Map of Mincontinental Rift System With Duluth Complex

The magmatic deposits include copper-nickel-precious metals and titanium-iron mineralization in the Duluth Complex with uranium, rare earths in carbonates and copper-molybdenum in breccia pipes.

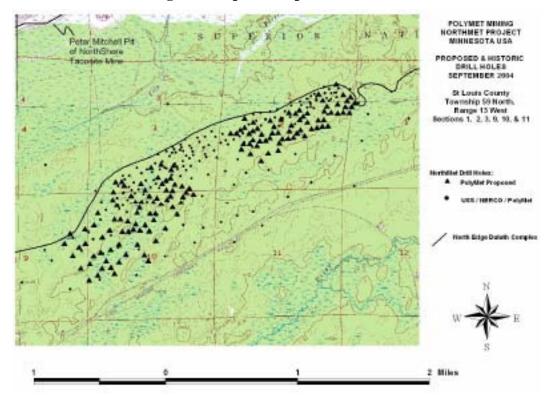
NorthMet is a magmatic deposit located on the northwestern contact of the Duluth Complex and the underlying sediments. The majority of rock at NorthMet is unaltered, with minor alteration along fractures.



Duluth Complex

MINERALIZATION

Mineralization occurs in four horizons – three in the deepest Unit 1 of the seven units of the Partridge River Intrusion, and one, enriched with platinum group metals, in the younger, shallower Unit 6. Unit 1 comprises fine- to course-grained troctolite with abundant biotite hornfels inclusions and local ultamafic layers. This Unit, which is the main sulfide bearing zone, is believed to be the result of multiple pulses of magmatic injection. The three mineralized horizons within Unit 1 vary in thickness from a few feet up to 200 feet, and in some areas the horizons merge.


Sulfide mineralization comprising chalcopyrite and pyrrhotite with minor bornite, pyrite, sphalerite and galena occurs mainly as blebs and within grains, interwoven with silicates, and as fine veinlets. Sulfides range from trace to about 5%. Precious metals are associated with the sulfides.

Plan View and Typical Cross-Section Looking Southwest

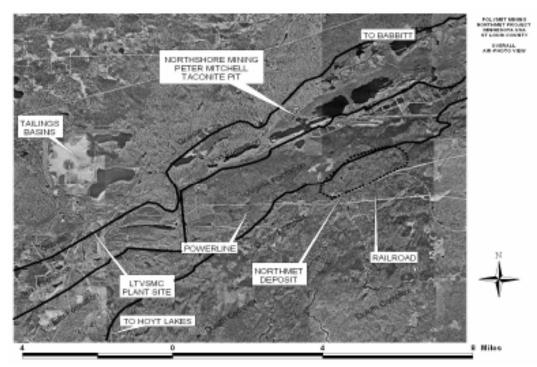
EXPLORATION AND DRILLING

Prior to the latest drilling program, there were 188 drill holes totaling 175,000 feet (53,000 meters) to an average depth of 930 feet (280 meters.) Of these, 112 holes averaging 1,200 feet (360 meters) were drilled by US Steel targeting high grade underground copper-nickel potential. Subsequent drilling by PolyMet has averaged 550 feet (165 meters.) The majority – 133 holes – are core, with most of the balance reverse circulation and 3 mixed.

Existing and Proposed Exploration Drill Holes

MINING

The mine plan is currently being optimized. The original plan in 2001 called for processing 50,000 tonnes per day, or approximately 18 million tonnes of ore a year. This rate was scaled back in the 2004 reports, which recognized the potential for expansion during the life of the project. However, the initial 2004 plan was primarily rescheduling of the 2001 plan. Since then, PolyMet has been optimizing the pit plan to reduce waste and thus further improve the economics. The Company is currently focused on maximizing the angle of the interim high-wall in order to minimize the strip ratio.


The optimization work is still in progress. The latest plans indicate significantly lower mining costs owing to mining much less waste rock, with a reduction in the strip (waste:ore) ratio from 3.1:1 to 1.1:1. This is achieved by taking advantage of the geometry of the mineralization, placing the haul roads along the shallow-dipping northwestern footwall and leaving a much steeper high wall to the southeast.

This plan is shown in the schematic below and can be envisaged by looking at the cross section on Page 10 – the new plan places the haul roads on the shallow-dipping footwall above the slate horizon shown. The current plan calls for mining 25,000 tonnes per day with an average strip (waste:ore) ratio of 1.1:1.

Latest Projected Ultimate Pit Plan

Aerial View of Project Area

The major mining fleet will consist of nine 185-tonne trucks, two shovels, two loaders and two blasthole drills supported by the usual equipment. Ore will be trucked to railcars that will then deliver the ore to the primary crusher at the Cliffs Erie plant. While this method is unique to Minnesota, it has been well tried and tested in the taconite industry.

PROCESSING

There are two aspects to the processing plant – the crushing, grinding and flotation circuit and the backend metal recovery circuit. The former does not generally warrant any great discussion, although it is typically a very substantial part of the capital cost, especially in today's steel price environment. However, because of the option with Cleveland Cliffs to acquire a fully-established grinding and processing plant for a few cents on the dollar, the crushing, grinding and flotation circuit at NorthMet deserves a lot of focus.

The Cliffs-Erie Plant

The Cliffs-Erie plant was built by LTV Corporation in the early 1950s to support taconite mining operations in the area. 100,000 tons per day of taconite was transported to the plant in rail cars, processed at the plant before the resulting iron ore was pelletized for shipping to customers.

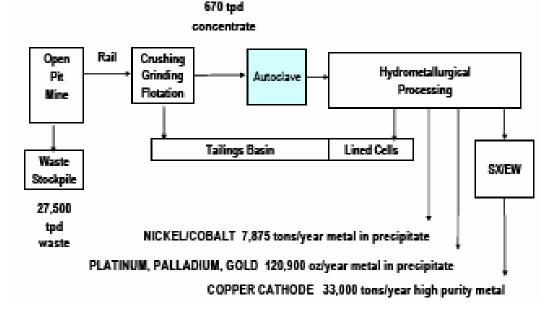
The Cliffs-Erie Processing Plant

The whole plant is reported to have cost approximately US\$350 million in the 1950s. It can best be described as being 1950s American engineering at its best. The photograph above on Page 13 shows an aerial view of the plant – the ore cars arrive at the primary crusher to the right of the photograph. Crushed ore is then fed up the conveyor (center) and then feeds a bank of some 34 mill circuits in the long building that stretches across the picture.

That building is some 1,440 feet (435 meters) long – the length of four football fields. The photograph below was taken from the center of the mill and represents one half of the total capacity.

View of the one half of Cliffs-Erie Grinding Circuits

Not only is the scale impressive, but the quality and logistics are remarkable. Every major piece of equipment can be pulled out of line with massive overhead cranes so that repairs and maintenance can be carried out without disrupting production. Key items such as the primary crushers and loading system are duplicated. People ask what it would cost to replicate – the simple answer is that today no-one would even contemplate replicating the plant, but estimates range upward of US\$2 billion.


PolyMet plans to utilize approximately one-quarter of the plant in its initial operations. Given the parallel circuits, operating below capacity will be efficient. The excess capacity will facilitate project expansion or processing of material from other deposits in the area.

Run of mine ore will be delivered by rail to the Cliffs-Erie plant where it will pass initially through one of two 60-inch gyratory crushers that will crush to minus 6 inches and then through two 36-inch gyratory crushers that will crush to minus 2 inches. From there ore will pass to two 7-foot cone crushers and finally to a separate building housing four short-head and standard cone crushers. The minus ³/₈-inch discharge will be fed to the fine ore bin.

Ore will then go to one of eight rod-and-ball-mill circuits that will produce a flotation feed of 30% solids, with 80% less than 200 microns. The flotation circuit will produce a metal-rich concentrate on approximately a 40:1 concentrate ratio, reducing 25,000 tonnes to approximately 670 tonnes per day. Flotation tails will be sent to the existing tailings impoundment and the concentrate will be delivered to the metal recovery circuit.

Metal Recovery

The flotation concentrate will be processed in a pressure leaching (or autoclave) plant that will comprise two parallel units of a standard size and configuration. Pressure leaching has become a widely-used process during the past decade or so and in essence comprises a high-temperature, oxygen-rich environment in which sulfides are broken down enabling individual metals to be recovered. The process in effect accelerates what nature does over perhaps millions of years into a few hours.

NorthMet Operational Flow Sheet

Metals emerge from the autoclave in a pregnant leach solution as copper sulfate, nickel sulfate and unstable, complex precious metals salts. Precious metals will be precipitated first into a rich sludge that can be sold to precious metals refineries.

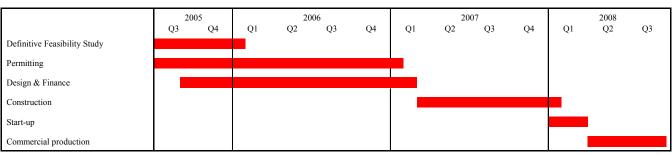
The remaining copper-nickel-cobalt leach solution will be neutralized and thickened and then enter a conventional copper solvent-extraction/electro-winning (SX/EW) circuit used extensively in the copper industry. The product will be merchant-quality copper cathode that will be sold directly to consumers or on the terminal markets.

The remaining solution will then pass through various stages such as iron removal and will be thickened before the nickel and cobalt are precipitated into a concentrate that can be shipped to a refinery for ultimate metal recovery.

LAND OWNERSHIP AND PERMITTING

Underlying mineral rights are owned by RGGS, a Houston-based resource company that acquired much of US Steel Corp's real estate holdings and which holds a 3% royalty on production from the property. Most of the surface land is controlled by the U.S. Forest Service and rights are held through PolyMet's 100%-owned US subsidiary, PolyMet Mining Inc. under a 20-year renewable lease from RGGS.

As previously stated, the area is not new to mining. There are numerous currently and recently active large-scale mines in the area. There have also been extensive baseline environmental studies completed that have not identified any issues that would be likely to be impediments to mining. The permitting process will involve a full environmental impact study (EIS) which is being prepared. State and Federal authorities have agreed to a joint EIS.


Other major permits required will include a mining and reclamation plan approved by the Minnesota Department of Natural Resources (DNR), air emission permits issued by the Pollution Control Agency of Minnesota (PCA), State wetlands and mine operating permits, and water permits issued by the PCA. It is encouraging that most of the permitting process is handled at the State level. Northern Minnesota is mining-friendly and the local communities are supportive of new businesses that could help the local economy recover.

The Cliffs-Erie plant addresses many of the permitting issues – other than the actual mining, this will be viewed as a plant reactivation and not a new plant. The existing permitted facilities include the tailing impoundment, which is sometimes one of the more challenging items to permit.

PROJECT DEVELOPMENT

Bateman Engineering is the coordinating consultant and is currently completing a definitive, or bankable, feasibility study that will include detailed engineering and operational planning. That is scheduled for completion in the first quarter of 2006. This will enable the Company to file its plan of operations with the regulatory authorities and commence the final phase of permitting, targeted completion in the first quarter of 2007. In parallel with that process, final engineering design will be completed along with financing, subject to receipt of appropriate permits.

Once the permits have been received and financing is secured, formal construction is scheduled to commence early 2007 and continue through that year. Project start-up is slated for early 2008, with full commercial production before mid-year.

Development Schedule

PolyMet plans to use contract mining in order to save on initial capital – the financial projections take the additional operating costs into account. The capital costs are set out in the table below and show a saving of more than US\$197 million compared with the 2001 study. While some of those savings reflect the smaller size of operations (25,000 tonnes per day versus 50,000 tonnes per day) the biggest savings come from utilizing the Cliffs Erie plant combined with contract mining.

Capital Costs through Startup

	Ca	pital			
		2006	2007	2008	2006 - 2036
Capital Expenditures					
Mining	\$mm		5.760	-	5.760
Total direct costs	\$mm	-	88.500	42.165	130.665
Total indirect costs	\$mm	10.560	34.106	28.463	73.130
Total direct and indirect costs	\$mm	10.560	122.606	70.628	203.795
Total other costs	\$mm	2.000	4.250	6.750	13.000
Total (excl. working capital)	\$mm	12.560	126.856	77.378	216.795

Total capital through start-up is estimated to be US\$217 million, excluding working capital, of which US\$130 million is direct costs, US\$40 million in engineering and construction management and start-up related expenses, with a contingency factor of US\$33 million. The July 2004 Technical Report included \$5 million to exercise the option to acquire the Cliffs Erie plant that will be funded from the latest financing and \$12.5 million in working capital that we have excluded in analysis set out in the table on the previous page.

METALS MARKETS

Industrial metal prices have generally been strong during the past two years, driven by demand growth, capacity constraints and the fact that consumption is global, tending to drive dollar-denominated prices up during periods of dollar weakness.

The biggest single factor behind demand growth has been the rapid growth in China and, to a lesser extent, India. These markets have been particularly influential in copper and nickel which, combined, represent approximately 80% of PolyMet's projected revenues – and we expect this trend to continue. Both metals are used heavily in the construction industries – copper demand per person also increases with affluence as people buy more electronic goods and other copper-intensive items. While there are likely to be ups and downs on the way, we believe that the world is facing a secular increase in many commodity prices, especially when denominated in US dollars.

Palladium

Nickel

FINANCIAL ANALYSIS

PolyMet's sole asset is the NorthMet project. Thus, our analysis focuses on that project and the implications for the shareholders of PolyMet.

CAPITAL STRUCTURE & BALANCE SHEET

PolyMet's capital structure is very straight forward. The Company has no debt and only one class of common stock. The fiscal year ends on January 31.

As of April 30, 2005 (the end of the last quarter) there were 66.9 million shares. The Company recently completed private placements of 15.9 million units at C\$0.90, each unit comprising one share plus one half warrant, a full warrant exercisable at C\$1.25 with forced conversion when the share prices trades over C\$2.50 for twenty trading days.

It has also agreed to issue 6.2 million shares to Cleveland Cliffs as part of the consideration for exercise of the option to acquire the Cliffs-Erie plant.

Including the financing, the pro forma capitalization is 83.1 million shares with an additional 5.4 million options at an average exercise price of C\$0.38 and 19.2 million warrants with an average exercise price of C\$0.87. On a fully diluted basis there are 107.7 million shares and the Company would have an additional US\$16 million in cash from exercise of those options and warrants.

and at January 31, 2005 – U.S. Funds ASSETS April 30, 2005 January 31, 2005 proforma Current \$ 12,294,410 \$ 738,498 \$ 510,871 Cash Term deposits 1.589.600 1.589.600 807,200 Receivables & prepaid expenses 38,497 38.497 286,601 13,922,507 2,366,595 1,604,672 253 253 Investments 253 Other assets 729,320 729,320 729,320 <u>1</u>4,974 Property, plant & equipment 14,974 15,919 \$ 14,667,054 \$ 3,111,142 \$ 2,350,164 LIABILITIES Current Accounts payable 45,371 45,371 \$ 331,012 \$ 45,371 45,371 331,012 SHAREHOLDERS' EQUITY Share capital & contributed surplus 35.046.343 23,490,431 20.106.740 Surplus (20.424.660)(20, 424, 660)(18, 137, 588)3,065,771 14,621,683 1,969,152

14,667,054

3,111,142

Consolidated Balance Sheet

As at April 30 (actual and pro forma for latest financings)

Total liabilities and shareholders' equity

2,300,164

KEY AGREEMENTS

PolyMet has two key agreements in connection with the NorthMet property. The first is the property lease with US Steel Corporation dated January 4, 1989, subsequently transferred to RGGS. The initial term of the renewable lease is 20 years. The Company makes annual advance royalty payments of US\$75,000 on each anniversary of the agreement and all payments due have been made. These advance royalties will be deducted from the 3% royalty payable from production. The lease can be renewed automatically on the same terms.

The other key agreement is with Cleveland Cliffs. In the original option dated February 14, 2004, the Company had exclusive rights to acquire parts of the Cliffs-Erie plant at any time until June 30, 2006, for which PolyMet paid US\$500,000 and issued one million shares of common stock. On September 14, 2005 PolyMet and Cleveland Cliffs announced that the parties had expanded the scope of the acquisition and agreed payment of US\$3.4 million in cash and \$4.6 million in stock valued at C\$0.90 per share, with closing pending regulatory approval.

FINANCING

The current estimated capital expenditure to bring NorthMet into production is US\$216.8 million before working capital and excluding exercise of the Cliffs-Erie option that will be funded from the latest financing. In addition, we have assumed sustaining capital of \$2.5 million a year. We have further assumed that 70% of the total capital will be financed under a conventional project loan facility. We have further assumed an interest rate of 8% and a ten-year repayment schedule with a 50% cash flow sweep – that is, half the cash flow after scheduled debt repayment will be used for mandatory prepayments.

On our base case, this equates to a total drawdown of US\$164 million that is repaid in six years (because of the mandatory prepayments.) This amount falls well within typical loan covenants covering total mineral reserves and cash flow over the term of the loan – indeed, total debt service would be approximately 54% of after tax free cash flow from the operation during the scheduled debt term.

This would leave a total equity requirement of approximately US\$75 million, including covering corporate overhead, startup costs and financing fees that we estimate to be US\$10 million.

We have assumed an equity financing of US\$15 million during 2006 and production equity financing of US\$65 million in 2007, providing a cushion of US\$5 million. We believe this will be funded through a combination of up-front payments under off take contracts and straight equity in the company.

METAL PRICE ASSUMPTIONS

The table on the following page below summarizes our metal price assumptions and sets out some key parameters for the project for these different cases. Our base case metal price assumption is the three-year average to the end of June 2005. We have also run the models using ten-year averages, +/- 20% from the three-year average, and at prices prevailing at the end of July 2005.

	(3-yr mean)	(10-yr mean)	(Base-20%)	(Base+20%)	(8/24/05)
Copper	1.05	0.93	0.85	1.25	1.74
Nickel	5.25	2.72	4.20	6.30	6.85
Cobalt	15.00	14.06	12.00	18.00	16.20
Palladium	230.00	390.00	185.00	275.00	183.50
Platinum	750.00	630.00	600.00	900.00	896.00
Gold	380.00	334.00	300.00	455.00	438.85

OPERATING COSTS/BREAKEVEN

Our projections assume costs as set out in the 2004 study. Miners watch costs per tonne of rock – which indicates how efficiently a company actually mines – and the cost per tonne of ore – which, together with the grade of the ore and metallurgical recoveries determines the cost of producing a unit of metal. Of course, that final cost is what really matters.

NorthMet is projected to have mining costs of US\$0.64 per tonne, which is in line with other large scale operations using contract mining equipment. This equates to US\$1.36 per tonne of ore based on a strip ratio of 1.1:1.

Processing costs are currently estimated to be approximately US\$6.59 per tonne of ore processed – the largest costs being consumables (37%), power (28%), and labor (18%.).

Many polymetallic operations take the most important contributor to revenues and then apply revenues from other products against the costs of producing the single metal – the so-called by-product method. In our opinion, this is misleading and we prefer the co-product method where costs are allocated against each metal according to that metal's contribution to revenue.

Using this approach, we estimate the average cost of producing a pound of copper to be US\$0.56 on a cash basis or US\$0.62 per pound including capital. The full costs are little more than half of our base case assumptions and are below the bottom of the last cycle which we believe was skewed by the strength of the dollar at that time.

Using the by-product method, where by-product revenues are taken as a deduction against costs, the cost of producing copper averages approximately zero over the life of the project – in other words, the nickel, platinum group and other metals cover all the operating costs.

We anticipate improvements to the economics as the final mine plan is developed in the coming months.

PROJECT VALUATION

We believe that the most important valuation tools for assets such as mines that have little or no terminal value are rates of return on invested capital and the discounted future cash flow. We believe that the discount rate should be relatively high during the early stages of the project development, declining as the development risks are eliminated and the project moves towards production. Looked at the other way around, the expected rate of return will decline as the project advances towards production. In reality, the market makes this assessment every day, balancing risk and reward – absent other changes, stock prices change to reflect the gradual evolution of the ratio between risk and reward.

The chart on Page 4 sets out our fundamental valuation projections on a range of metal prices. This reflects the present value of the future cash flow adjusted for balance sheet items projected year-by-year. Depending on metal price assumptions, our current valuation ranges from a low of US\$113 million (reflecting three-year average metal prices) to US\$240 million, based on prices 20% above the trailing three-year average. Even for the low, recession case, the valuation increases to more than US\$320 million over the next three years – the higher cases project values approximating US\$1.2 billion within three years.

PolyMet's current market capitalization, adjusted for cash and debt, is approximately US\$102 million. Our base case valuation is more than six times that in three years, and our more optimistic valuations are in excess of ten times the current market capitalization.

As we discussed on Page 3, there are numerous factors that could further enhance the fundamental value of the property.

	Case:	Base (3-yr mean)	Long-term (10-yr mean)	Low (Base-20%)	High (Base+20%)	Current (8/24/05)
Contribution to revenue						
Copper		37%	40%	38%	37%	45%
Nickel & cobalt		42%	28%	41%	42%	39%
Precious metals		21%	32%	21%	21%	16%
Rates of return at 1/1/06						
Project before tax		25.8%	17.0%	12.6%	37.9%	47.8%
Project after tax		18.6%	12.6%	9.7%	26.9%	33.7%
Equity before tax		40.4%	22.7%	13.6%	62.9%	80.0%
Equity after tax		23.9%	13.1%	8.1%	38.5%	50.0%
Present values at 1/1/06						
PV10: project before tax		230.3	95.7	35.7	424.7	595.1
PV10: project after tax		116.0	33.0	(3.9)	236.8	343.4
PV10: equity before tax		207.6	80.8	24.4	391.8	553.9
PV10: equity after tax		107.5	23.1	(14.3)	231.5	341.5
Free cash from operations		1,257.8	759.1	555.3	1,959.2	2,588.4
Total cash-on-cash		526%	317%	232%	819%	1082%

Valuation Summary

Another valuation approach is to consider what the market will pay for copper exploration – a widely-accepted rule of thumb is US\$0.015 per pound of copper resource. NorthMet is estimated to contain some 6.35 billion pounds of copper, which would be worth US\$95 million. However, copper represents just 39% of the recoverable metal value – indicating a total value of approximately US\$243 million.

We estimate that PolyMet will earn approximately US\$36 million in net income in 2009. The current adjusted market capitalization is 2.3 times projected net income; if the shares were to sell at a modest ten times earnings in 2010, the market capitalization would have to increase by a factor of more than four.

proteus capital corp

						perations .	Dperations & Revenues	Sc							
	Year	2006 -2	2007 -1	2008 0	2009 1	2010 2	2011 3	2012 4	2013 5	2014 6	2015 7	2016 8	2017 9	2018 10	2006 - 2036 Total: -2 to 28
Mining & processing															
Actual operating days	days			184	348	340	344	364	364	356	316	340	364	360	10,008
Tonnes of ore per day	1000,			25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000	25.000
Rock mined	1000,			10.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	15.000	17.800	21.000	528.300
Waste mined	1000,		,	5.400	6.300	6.500	6.400	5.900	5.900	6.100	7.100	6.500	8.700	12.000	278.100
Ore mined	1000,		,	4 600	8 700	8 500	8 600	9 100	9 100	8 900	006 2	8 500	9 100	000 6	250 200
Strip ratio			ı	1.17	0.72	0.76	0.74	0.65	0.65	0.69	06.0	0.76	0.96	1.33	1.11
Contained metal															
Conner	dhmm			34.480	63.294	58.091	51.190	60.185	60.185	66.711	48.765	46.847	58.179	63.492	1.594
Nickel	mmlb			10.141	17.262	16.865	15.168	16.049	16.049	17.659	13.933	11.243	14.043	15.873	430
Cobalt	dlmm			0.702	1.225	1.307	1.282	1.298	1.291	1.342	1.115	1.023	1.164	1.234	35
Palladium	ZO			56,199	123,071	101,112	88,477	99,473	93,621	100,148	71,116	71,052	93,621	92,593	2,409,369
Platinum	ZO			13,310	25,174	24,595	22,119	26,331	26,331	28,614	20,319	24,595	26,331	26,042	673,708
Gold	ZO			5,916	13,985	16,397	13,825	14,628	14,628	14,307	10,159	13,664	14,628	14,468	355,774
Metal recovered															
Copper	dlmm			31.728	58.242	53.454	47.105	55.382	55.382	61.386	44.873	43.108	53.536	58.425	1,466.395
Nickel	dlmm			6.782	11.544	11.279	10.143	10.733	10.733	11.809	9.318	7.519	9.392	10.615	287.674
Cobalt	dlmm			0.271	0.474	0.505	0.496	0.502	0.499	0.519	0.431	0.396	0.450	0.477	13.633
Palladium	ZO			41,895	91,748	75,378	65,959	74,156	69,793	74,659	53,016	52,968	69,793	69,026	1,796,150
Platinum	ZO			9,728	18,398	17,975	16,166	19,244	19,244	20,913	14,850	17,975	19,244	19,033	492,384
Gold	ZO			3,963	9,370	10,986	9,262	9,801	9,801	9,585	6,807	9,155	9,801	9,693	238,365
Revenues															
Gross revenue contribution															
Copper	Smm			33.314	61.154	56.127	49.460	58.151	58.151	64.456	47.117	45.264	56.212	61.346	1,539.715
Nickel	Smm			35.605	60.607	59.213	53.253	56.349	56.349	62.000	48.919	39.476	49.306	55.730	1,510.287
Cobalt	Smm			4.071	7.107	7.581	7.435	7.531	7.485	7.786	6.468	5.935	6.753	7.158	204.493
Palladium	Smm			9.636	21.102	17.337	15.170	17.056	16.052	17.172	12.194	12.183	16.052	15.876	413.115
Platinum	Smm			7.296	13.799	13.482	12.125	14.433	14.433	15.684	11.138	13.482	14.433	14.275	369.288
Gold	Smm			01.506	3.561	4.175	3.520	3.724	3.724	3.642	2.587	3.479	3.724	3.683	90.579
	5						00000		01.001	2		010.011	101-01-1	000001	
Smelting & reming Conner	Smm														
Nickel	Smm			8 901	15 152	14 803	13 313	14 087	14 087	15 500	12 230	0 869	17 376	13 933	277 572
Cobalt	Smm			1.018	1.777	1.895	1.859	1.883	1.871	1.947	1.617	1.484	1.688	1.789	51.123
Palladium	Smm			0.628	1 376	1131	0 989	1112	1 047	1 120	0 795	0 795	1 047	1 035	26 942
Platinum	Smm			0.156	0.294	0.288	0.259	0.308	0.308	0.335	0.238	0.288	0.308	0.305	7.878
Gold	Smm			0.036	0.084	0.099	0.083	0.088	0.088	0.086	0.061	0.082	0.088	0.087	2.145
Total	Smm			10.739	18.683	18.216	16.503	17.478	17.402	18.987	14.941	12.517	15.458	17.149	465.661
Net smelter revenue				80.689	148.646	139.699	124.459	139.766	138.794	151.753	113.481	107.300	131.024	140.919	3,661.816
US Steel royalty	Smm			2.421	4.459	4.191	3.734	4.193	4.164	4.553	3.404	3.219	3.931	4.228	109.854
Net revenue	Smm			78.269	144.187	135.508	120.726	135.573	134.630	147.200	110.076	104.081	127.093	136.691	3.551.962

proteus capital corp

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							Operating Cost	ng Costs								
Image: constant of the sector of th		Year	2006 - 2	2007 - 1	2008 0	2009 1	2010 2	2011 3	2012 4	2013 5	2014 6	2015 7	2016 8	2017 9		2006 - 2036 Total: -2 to 28
	Costs															
mm i 0.00 0.33	Mining costs															
met ::::::::::::::::::::::::::::::::::::	Drilling	Smm			0.370	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.555	0.659	0.777	19.547
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Blasting	Smm			0.380	0.570	0.570	0.570	0.570	0/2.0	0.570	0.5.0	0/.5.0	0.6/6	0.798	20.075
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Loading	Smm			0.650	67.6.0	676.0	0.975	67.6.0	0.975	676.0	676.0	0.975	1.157	1.365	34.340
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Hauling	Smm		•	3.290	4.935	4.935	4.935	4.935	4.935	4.935	4.935	4.935	5.856	606.9	173.811
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Auxiliary	Smm		'	0.540	0.810	0.810	0.810	0.810	0.810	0.810	0.810	0.810	0.961	1.134	28.528
Sime : 0.330 0.420 0.420 0.420 0.420 0.420 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.430 0.440 0.441 <th0.44< th=""> <th0.44< th=""> <th0.44< th=""></th0.44<></th0.44<></th0.44<>	General mine	Smm		,	0.240	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.360	0.427	0.504	12.679
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	General maintenance	Smm			0.280	0.420	0.420	0.420	0.420	0.420	0.420	0.420	0.420	0.498	0.588	14.792
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Administrative	Smm			0.380	0.570	0.570	0.570	0.570	0.570	0.570	0.570	0.570	0.676	0.798	20.075
Sum - 6437 9655 9655 9655 9655 9655 9655 9655 1147 11371 13377 1347 13377 1347 13377 1347 13377 1347 13377 1347 1347 13377 1347	Continency	Smm			0.307	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.460	0.546	0.644	16.192
out 31 064	Total	Smm			6.437	9.655	9.655	9.655	9.655	9.655	9.655	9.655	9.655	11.457	13.517	340.040
13 14 11 114 112 106 108 122 114 126 139 Sem - - - - - 1178 21141 2065 2490 1020 1020 1056 9490 1020 1039 10590 1056 9490 1030 1030 1040 1030 1030 1031 2164 1549 1038 2113 2167 1917 2065 2113 2187 1030 <td>Mining cost per tonne of rock</td> <td>S/t</td> <td></td> <td></td> <td>0.64</td>	Mining cost per tonne of rock	S/t			0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64	0.64
State 1 1 3 1 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 <td>Mining cost per tonne of ore</td> <td>S/t</td> <td></td> <td></td> <td>1.40</td> <td>1.11</td> <td>1.14</td> <td>1.12</td> <td>1.06</td> <td>1.06</td> <td>1.08</td> <td>1.22</td> <td>1.14</td> <td>1.26</td> <td>1.50</td> <td>1.36</td>	Mining cost per tonne of ore	S/t			1.40	1.11	1.14	1.12	1.06	1.06	1.08	1.22	1.14	1.26	1.50	1.36
Sum	Processing															
Sime	Consumables	Smm			11178	21 141	20.655	20.898	22 113	22 113	21 627	19 197	20.655	22 113	21 870	607 986
min - 5 340 16000 15821 16741 16774 16370 14350 15600 16741 15500 16741 15500 16741 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16761 15500 16701 15500 16701 15500 16701 15500 16701 15500 16701 15500 16701 1573	Labor	Smm			5 520	10 440	10.200	10320	0.001	006.01	10.680	9 480	10.200	10.920	10.800	300.240
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Douver	5			0700	16.000	15 640	15 074	16 744	07/01	16 276	14 536	15 640	16 744	16.560	9460 269
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		smm °		•	0.404	0.010	040.01	470.01	10./44	10./44	0/5.01	2100	040.01	10./44	092.01	000.00 1
Sime - 0.306 1.2.1 1.7.3 1.800 1.971 1.971 1.800 1.731 1.700 1.73	Operating supplies	Smm			0.184	0.348	0.340	0.344	0.504	0.504	000.0	015.0	0.340	0.304	0.360	10.008
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Maintenance supplies	Smm			0.900	1.82/	C8/.1	1.800	116.1	119.1	1.809	PC0.1	C8/.1	116.1	1.890	240.20
Sim - 1.44 2.01 4.50 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.823 4.833 2.933 6.59 <td>Environmental</td> <td>Smm</td> <td></td> <td></td> <td>0.138</td> <td>0.261</td> <td>0.255</td> <td>0.258</td> <td>0.273</td> <td>0.273</td> <td>0.267</td> <td>0.237</td> <td>0.255</td> <td>0.273</td> <td>0.270</td> <td>005.7</td>	Environmental	Smm			0.138	0.261	0.255	0.258	0.273	0.273	0.267	0.237	0.255	0.273	0.270	005.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	General & administrative	Smm		•	2.438	4.611	4.505	4.558	4.823	4.823	4.717	4.187	4.505	4.823	4.770	132.606
sum - 3032 5736 56049 5508 6005 556045 56049 6005 59346 1,64 sum 51 6.39 6.39 6.39 6.39 6.39 6.39 6.39 6.39 5.3 5346 1,64 sum 0.173 0.169 0.172 0.161 0.161 0.177 0.140 0.113 0.141 0.159 5.9	Contingency	Smm		•	1.444	2.732	2.669	2.700	2.857	2.857	2.795	2.481	2.669	2.857	2.826	78.563
ofore \$1 6.59 5.59 sum 0.012 0.037 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 0.033 <td>Total</td> <td>Smm</td> <td></td> <td></td> <td>30.332</td> <td>57.368</td> <td>56.049</td> <td>56.708</td> <td>60.005</td> <td>60.005</td> <td>58.687</td> <td>52.093</td> <td>56.049</td> <td>60.005</td> <td>59.346</td> <td>1,649.819</td>	Total	Smm			30.332	57.368	56.049	56.708	60.005	60.005	58.687	52.093	56.049	60.005	59.346	1,649.819
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Processing cost per tonne of ore	S/t			6:59	6.59	6.59	6:59	6.59	6:59	6.59	6.59	6.59	6.59	6:59	6.59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Marketing & transportation															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Copper	Smm			0.476	0.874	0.802	0.707	0.831	0.831	0.921	0.673	0.647	0.803	0.876	21.996
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Nickel	Smm			0.102	0.173	0.169	0.152	0.161	0.161	0.177	0.140	0.113	0.141	0.159	4.315
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Cobalt	Smm				,	,		,	,	,	'	,	'	,	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Palladium	Smm			0.002	0.004	0.003	0.003	0.003	0.003	0.003	0.002	0.002	0.003	0.003	0.075
Sum . 0.002 0.005 0.005 0.005 0.003 0.003 0.005	Platinum	Smm			0.019	0.037	0.036	0.032	0.038	0.038	0.042	0.030	0.036	0.038	0.038	0.985
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Gold	Smm			0.002	0.005	0.005	0.005	0.005	0.005	0.005	0.003	0.005	0.005	0.005	0.119
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Total	Smm		'	0.601	1.092	1.016	0.898	1.038	1.038	1.148	0.848	0.802	0.990	1.081	27.490
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Other															
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	General & administrative	Smm	,	'	0.750	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	42.750
Samm - 10,000 0.750 1.500 1.5	Other fees	Smm		10.000											,	10.000
simm - 10.000 38.120 69.615 68.219 68.762 72.198 70.989 64.096 68.006 73.953 75.444 2.071 ash cost 0.47 0.46 0.48 0.55 0.51 0.51 0.46 0.56 0.53 all cost 0.52 0.51 0.57 0.57 0.57 0.57 0.50 0.59 0.59 ash cost 0.260 0.51 0.57 0.57 0.57 0.57 0.50 0.59 <	Total	Smm		10.000	0.750	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	52.750
ash cost 0.47 0.46 0.48 0.55 0.51 0.51 0.46 0.62 0.56 0.56 0.53 0.53 0.51 0.51 0.57 0.57 0.57 0.70 0.62 0.59 0.59 ash cost 0.26 0.28 0.20 0.20 0.010 (0.14) (0.12) (0.23) 0.17 0.02 (0.04)	Total costs	Smm		10.000	38.120	69.615	68.219	68.762	72.198	72.198	70.989	64.096	68.006	73.953	75.444	2,070.100
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Copper costs															
0.52 0.51 0.53 0.60 0.57 0.57 0.52 0.62 0.70 0.62 0.70 1.69 (0.26) (0.28) (0.26) (0.10) (0.14) (0.12) (0.23) (0.2) 0.17 0.02 (0.04)	Co-product cash cost				0.47	0.46	0.48	0.55	0.51	0.51	0.46	0.56	0.62	0.56	0.53	0.56
(0.26) (0.28) (0.26) (0.12) (0.10) (0.14) (0.12) (0.23) (0.02) 0.17 0.02 (0.04)	Co-product full cost				0.52	0.51	0.53	0.60	0.57	0.57	0.52	0.62	0.70	0.62	0.59	0.62
	By-product cash cost				(0.26)	(0.28)	(0.26)	(0.10)	(0.14)	(0.12)	(0.23)	(0.02)	0.17	0.02	(0.04)	(0.00)

proteus capital corp

					Incon	Income, Cash Flow and Finance	low and Fi	nance							
	Year	2006 -2	2007 -1	2008 0	2009 1	2010 2	2011 3	2012 4	2013 5	2014 6	2015 7	2016 8	2017 9	2018 10	2006 - 2036 Total: -2 to 28
Simplified income statement Net smelter revenue	Smm			78.269	144.187	135.508	120.726	135.573	134.630	147.200	110.076	104.081	12.0% 127.093	1,374 136.691	3,551.962
Mining cost	Smm			6.437	9.655	9.655	9.655	9.655	9.655	9.655	9.655	9.655	11.457	13.517	340.040
Processing cost	Smm	'		30.332	57.368	56.049	56.708	60.005	60.005	58.687	52.093	56.049	60.005	59.346	1,649.819
Selling & transportation	Smm	•	·	0.601	1.092	1.016	0.898	1.038	1.038	1.148	0.848	0.802	0.990	1.081	27.490
Other costs	Smm		10.000	0.750	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	1.500	52.750
EBITDA	Smm		(10.000)	40.149	74.572	67.288	51.964	63.374	62.432	76.211	45.981	36.076	53.140	61.247	1,481.862
Depreciation, depletion & amortization	Smm			3.986	7.538	7.450	7.624	8.158	8.249	8.156	7.319	7.960	8.612	8.608	220.161
EBIT	Smm	•	(10.000)	36.163	67.033	59.838	44.340	55.216	54.183	68.055	38.662	28.116	44.528	52.639	1,261.701
Interest	Smm		3.904	10.480	12.786	10.498	8.418	6.695	4.634	2.520					59.935
EBT Taxation	Smm Smm		(13.904) -	25.683 4.005	54.248 18.444	49.340 16.776	35.923 12.214	48.521 16.497	49.549 16.847	65.534 22.282	38.662 13.145	28.116 9.559	44.528 15.139	52.639 17.897	1,201.766 408.601
Net income	Smm	,	(13.904)	21.678	35.804	32.564	23.709	32.024	32.703	43.253	25.517	18.556	29.388	34.742	793.166
Cash flow															
Cash from operations	Smm			40.899	76.072	68.788	53.464	64.874	63.932	77.711	47.481	37.576	54.640	62.747	1,534.612
Capex	Smm	12.560	126.856	77.378		2.500	2.500	2.500	2.500	2.500	2.500	2.500	2.500	2.500	276.795
Working capital requirement Free cash from onerations	Smm	- (12 560)	- (126.856)	(48 979)	4.904 71 168	(0.349) 66.637	0.136 50.828	0.859	(0.000) 61 432	(0.302) 75 514	(1.723) 46 704	34 098	1.487	0.373	- 1 257 817
Free cash from operations after tax	Smm	(12.560)	(126.856)	(52.984)	52.724	49.861	38.615	45.018	44.585	53.232	33.559	24.539	35.514	41.977	849.217
Finance Dote															
Deut Initial halance				07,600	150810	121 227	105 219	83 691	57 971	31506					
			- 002 600	000.76	610.601	177.161	617.001	160.00	176.10	000.10					164 400
Diaw Renav				-	- 16.440	- 16.440	- 16 440	- 16 440	- 16 440	- 16 440					08.640
Interest (paid at start of following period)				3.904	10.480	12.786	10.498	8.418	6.695	4.634	2.520				59.935
Cash flow sweep		,	,	4.581	12.152	9.568	5.088	9.330	9.975	15.066	,	,	·	,	65.760
Final balance after cash flow sweep		,		159.819	131.227	105.219	83.691	57.921	31.506	,	,	,	,	,	666.983
Cash to finance		•	(009.76)	(58.315)	39.072	38.793	32.026	34.188	33.110	36.140	2.520			•	59.935
Equity			(12.004)	92.2 10	16 904	123 00	002 20	100 00	COF CC	C3C C1	213.30	10 557	991.00		221 002
Denorted net interest			(+06.01)	0/0/17	400.00	10 408	9.119 9.419	470.7C	07.70 1624	002.04	110.07	000.01	000.67	24./42	50.025
D. D & A			-	3.986	7.538	7.450	7.624	8.158	8.249	8.156	7.319	7.960	8.612	8.608	220.161
Capex		(12.560)	(126.856)	(77.378)	1	(2.500)	(2.500)	(2.500)	(2.500)	(2.500)	(2.500)	(2.500)	(2.500)	(2.500)	(276.795)
Working capital requirement				(12.500)	(4.904)	0.349	(0.136)	(0.859)	0.000	0.302	1.723	(0.978)	(1.487)	(0.373)	
Financing			97.600	58.315	(39.072)	(38.793)	(32.026)	(34.188)	(33.110)	(36.140)	(2.520)	,			(59.935)
Cash to equity		(12.560)	(39.256)	4.581	12.152	9.568	5.088	9.330	9.975	15.592	29.539	23.039	34.014	40.477	736.532
Total equity requirement		(12.560)	(51.816)	(47.235)	(35.083)	(25.516)	(20.427)	(11.097)	(1.122)	14.470	44.009	67.047	101.061	141.538	
Cash to equity before tax		(12.560)	(39.256)	8.586	30.596	26.344	17.302	25.827	26.822	37.874	42.684	32.598	49.154	58.374	1,145.133
I axation Free cash to equity		- (12.560)	- (39.256)	4.581	18.444 12.152	9.568	5.088	16.497 9.330	10.847 9.975	15.592	29.539	23.039	34.014	40.477	
Domiter financian		15 000	65 000												
Equity cash end of period		2.440	28.184	32.765	44.917	54.484	59.573	68.903	78.878	94.470	124.009	147.047	181.061	221.538	

MANAGEMENT

PolyMet has built a strong senior management team that we believe is well able to execute the business plan. The team includes businessmen, mine geologists, mine builders, and mine operators.

WILLIAM MURRAY, P.ENG.; PRESIDENT, CEO & DIRECTOR.

Mr. Murray is a mining engineer with more than 30 years of experience in construction management and project evaluation in North America and Africa. As a principal of Optimum Project Services Ltd., he originally led the technical improvements and large capital cost reductions on the NorthMet Project.

Mr. Murray has been involved in numerous successful projects while working at Fluor Daniel (a large US Engineering & Construction contractor), Denison Mines (construction of the US\$1.2 billion Quintette Coal project), Optimum Project Services and Anglo American Corp in South Africa.

W. IAN L. FORREST, CA; CHAIRMAN AND DIRECTOR.

Mr. Forrest has 30 years experience with public companies in the resource sector having dealt with promotion, financing, exploration, production and company management. Notable projects include Gulfstream's North Dome gas discovery, Qatar, Reunion Mining's Scorpion zinc mine in Namibia (which was subsequently developed by Anglo American) and Ocean Diamond Mining, which pioneered the independent diamond dredging industry off the west coast of southern Africa.

He is currently a director of several resource companies in the oil & gas and mining sectors. Having played an important role in the revival of PolyMet Mining Corporation in 2003, he was appointed Chairman in May 2004.

DAVID DREISINGER, PHD., P.ENG.; DIRECTOR.

Dr. Dreisinger is Professor and Chair of the Industrial Research Chair in Hydrometallurgy at the University of British Columbia. Dr. Dreisinger has published numerous papers and has been extensively involved as a process consultant in industrial research programs with metallurgical companies, and has participated in 11 U.S. patents. He will work closely with the feasibility consultant to design and complete all aspects of the testwork.

GEORGE MOLYVIATIS; DIRECTOR.

Mr. Molyviatis worked as a private banker in Geneva and ran two investment funds. He specializes in resource sector projects and owns large forestry and timber processing facilities in Georgia and Russia.

JAMES SWEARINGEN; DIRECTOR.

Mr. Swearingen formerly managed the largest mining operation in North America, US Steel's Minntac mine and plant along Minnesota's Mesabi Iron Range, serving as General Manager of Minnesota Ore Operations. He currently serves as co-chair the Governor's Committee on Minnesota's Mining Future. Mr. Swearingen is also active with other groups to bring new technology to northeastern Minnesota to develop non-ferrous mines and new, value added projects in steel making. He is also an active advisor to the University of Minnesota's Natural Resources Research Institute based in Duluth, Minnesota.

WARREN HUDLESON; EXECUTIVE VICE PRESIDENT – DEVELOPMENT AND DIRECTOR OF U.S. SUBSIDIARY.

A graduate of the University of Minnesota-Minneapolis, Mr. Hudelson has been a corporate communications and public affairs practitioner for more than 30 years. He has considerable experience in Minnesota and other US States in the development and operation of large, complex industrial projects such as power plants, electric transmission lines, paper mills and mining projects. This skill set includes development of corporate policy, investor relations, governmental affairs, market research and advertising. Mr. Hudelson managed corporate communications for a major NYSE-traded company (Allete-Minnesota Power) for more than 20 years.

As senior company representative in Minnesota, Mr. Hudelson will coordinate PolyMet's development program between the project team and all interested parties. He is principal spokesperson for PolyMet and has an intimate working knowledge of news media at all levels.

GASTON REYMENANTS; VICE PRESIDENT MARKETING.

Mr. Reymenants graduated from the Universities of Brussels, Leuven and Antwerp in Economics, Industrial Marketing, International Law, and Foreign Languages. He has twenty years experience with a major mining company as a metals trader and twelve years experience as an independent with specific expertise in the nickel and cobalt markets. His role will be to lead negotiations with off-take companies for the LME Grade copper cathodes from PolyMet and the nickel and platinum group metals concentrates.

He is an active member of the Cobalt Development Institute, the Minor Metals Trade Association (Arbitration Committee), and several other professional associations.

TERESE J. GIESELMAN; CHIEF FINANCIAL OFFICER.

Terese J. Gieselman has extensive experience with junior mining companies in role of corporate secretary, compliance, regulatory filings and financings.

DON HUNTER, C.ENG.; PROJECT MANAGER.

During Mr. Hunter's 30-year career in the mining industry he has been involved in all aspects of mine development ranging from feasibility and mine engineering studies, through mine production supervision at both mine site and corporate levels, mine general management, senior technical support roles and as a consulting engineer. His experience covers both open pit and underground mining and a variety of commodities including copper, gold, nickel, various other base metals, bauxite, coal and industrial minerals.

Prior to joining PolyMet Mining Corp., Mr. Hunter worked for Hatch Associates as their Regional Director for mining and mineral processing. Before that, he worked with SRK Consulting as Principal Mining Engineer, for MIM Holdings Ltd as Group Mining Engineer and as General Manager Mining – Mt Isa Mines and as General Manager for a Chilean gold mining company. Prior to that Mr. Hunter worked for 17 years with Shell's mining subsidiary, Billiton International Metals BV in a variety of international and head office roles.

JIM SCOTT; ASSISTANT PROJECT MANAGER.

Mr. Scott is an engineer in the mining industry with 33 years of mining experience in engineering, maintenance, information technology/process automation, research, environmental affairs and management at Cleveland Cliffs Inc. (Cliffs). Mr. Scott is based near the PolyMet project site at Hoyt Lakes, Minnesota and is intimately familiar with the environmental regulations and the personnel in the respective agencies.

Before joining PolyMet's Project Development Team, Mr. Scott worked as a Manager at Cliffs-Erie, designing and managing mine closure and remediation programs. Cliffs-Erie is the site of the NorthMet project processing plant. His career at Cleveland Cliffs included many positions culminating as Manager --Technical Services (engineering, process development and environmental). Mr. Scott's previous corporate positions included manager of corporate operations, manager of the information technology and process automation group, and manager of a major research lab. These positions supported five major North American mines.

RICHARD PATELKE, M.SC.; NORTHMET PROJECT GEOLOGIST.

Mr. Patelke is a registered Professional Geologist with an M.Sc. from the University of Minnesota. He spent 14 years working on the geology and economic mineralization of the Duluth Complex, which hosts the NorthMet deposit. He is highly regarded in the Minnesota mining industry for his broad knowledge of the geology of the Iron Range, the Duluth Complex, and the surrounding region. His practical and direct involvement in a number of development projects in the region will be invaluable in streamlining PolyMet's development of the NorthMet deposit. Mr. Patelke also has practical mining experience, having worked as a Mine Geologist at Meridian Gold's Beartrack Mine in Idaho.

GRAHAM SCOTT; CORPORATE SECRETARY.

Graham Scott is PolyMet's lawyer, specializing in securities law principally in the mining sector. Mr. Scott represents many Canadian public companies which are listed on the TSX and TSX Venture Exchanges, in addition to clients in the corporate finance business. Mr. Scott has presented papers on securities law and mining law matters and has chaired many legal and industry conferences.